无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

一道李正元上中值證明題的思路

2023-07-20 10:09 作者:龍叔啊  | 我要投稿

思路:題目要求證明f''(x)有界,首先從Lagrange入手,因為此時題目已經(jīng)給出了f'''有界,如果使用Taylor定理會引入f',反而不好處理。

如圖,

Lagrange可以聯(lián)系原函數(shù)和導(dǎo)函數(shù)

,并且我們由上圖可知,不妨假設(shè)f'''(ξ)>0(<0同理),此時f''恒在切線上方,但此時題目給出了f'''有界,如

果能限制(x-x0)范圍即可證明出二階導(dǎo)有界。

此時我們將該式子兩邊加上絕對值,并且進行放縮,研究|x-x0|即可。 若0

接下來繼續(xù)研究另一個區(qū)間(x>x0)。 因為根據(jù)圖1的分析,此時Lagrange失效,考慮使用泰勒。

為了消掉f'(x)我們可以在x+x0和x-x0處Taylor展開,如上圖所示。

聯(lián)立兩式,用絕對值不等式進行放縮,可以證明有界。

此時我們不難發(fā)現(xiàn)x0具有任意性,x0=1即為李正元書上的特殊情況。

這里再補充一道原函數(shù)和導(dǎo)函數(shù)的題目

一道李正元上中值證明題的思路的評論 (共 條)

分享到微博請遵守國家法律
顺昌县| 崇义县| 南开区| 自治县| 米脂县| 伊宁市| 万山特区| 阿坝县| 屏东县| 通河县| 灵石县| 五台县| 房产| 高要市| 凌源市| 新营市| 象州县| 托克托县| 罗平县| 新郑市| 呈贡县| 天峻县| 婺源县| 开封县| 公安县| 台东市| 宝坻区| 安阳县| 久治县| 北宁市| 阳朔县| 互助| 安吉县| 华宁县| 南部县| 长治市| 扶沟县| 泾阳县| 邢台市| 常州市| 平邑县|