无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

偏微分計算

2023-06-22 11:41 作者:編程會一點建模不太懂  | 我要投稿

題目選自1996年考研數(shù)學(xué)

設(shè)變換%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3Dx-2y%5C%5C%0A%09v%3Dx%2Bay%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20可把方程6%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5Cpartial%20y%7D-%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20y%5E2%7D%3D0%0A

化為%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%3D0

分別計算變量u%2Cvx%2Cy的偏導(dǎo)數(shù)

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3Dx-2y%5C%5C%0A%09v%3Dx%2Bay%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%3D1%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%3D-2%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%3D1%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%3Da%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

通過鏈?zhǔn)椒▌t將zx%2Cy的一階偏導(dǎo)化為zu%2Cv的一階偏導(dǎo)

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%3D%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%2B%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%3D%5Cleft(%20-2%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%2Ba%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

通過鏈?zhǔn)椒▌t將zx%2Cy的二階偏導(dǎo)化為zu%2Cv的二階偏導(dǎo)

%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5E2%7D%3D%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%20%5Cright)%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%7D%7B%5Cpartial%20x%7D%0A

%3D%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D

%3D%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%2B2%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%0A

%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%0A

%3D%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D

%3D-2%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%2B%5Cleft(%20a-2%20%5Cright)%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2Ba%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%0A

%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20y%5E2%7D%3D-2%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%2Ba%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%0A

%3D-2%5Cleft(%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%20%5Cright)%20%2Ba%5Cleft(%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%20%5Cright)%20%0A

%3D4%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D-4a%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2Ba%5E2%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D

將上述偏導(dǎo)數(shù)帶入方程

6%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5Cpartial%20y%7D-%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20y%5E2%7D%3D0

%5Cleft(%2010%2B5a%20%5Cright)%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2B%5Cleft(%206%2Ba-a%5E2%20%5Cright)%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%3D0%0A

要使%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%3D0

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%0910%2B5a%5Cne%200%5C%5C%0A%096%2Ba-a%5E2%3D0%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20a%3D3

本題選自1996年考研數(shù)學(xué)真題,重點考察偏微分變換與鏈?zhǔn)椒▌t,計算量偏大,即便將此題放在現(xiàn)今考研數(shù)學(xué)命題中,也不失為一道好題難題。

近年來看來,考研數(shù)學(xué)的命題有往課本或者往年真題中重復(fù)命題的趨勢;譬如2022年考研數(shù)學(xué)一中切比雪夫不等式和線性代數(shù)大題在00年代考研數(shù)學(xué)中出過;2021年考研數(shù)學(xué)一的數(shù)一專題的第一問也是在同濟版高等數(shù)學(xué)中可找到類似的題目;2022年考研數(shù)學(xué)二中,線性代數(shù)大題瑞利商也是在同濟版線性代數(shù)課后題中能找到類似的題目。

偏微分計算的評論 (共 條)

分享到微博請遵守國家法律
牡丹江市| 昌宁县| 普格县| 水城县| 长春市| 太和县| 沭阳县| 新巴尔虎左旗| 灌云县| 瑞昌市| 潍坊市| 马鞍山市| 乌兰浩特市| 丰顺县| 徐水县| 庆城县| 潮州市| 灌云县| 揭阳市| 翁牛特旗| 永登县| 金塔县| 许昌市| 肃宁县| 尼木县| 黄陵县| 新和县| 荥阳市| 湾仔区| 高密市| 靖州| 万安县| 柞水县| 阿合奇县| 义马市| 临猗县| 枣庄市| 富民县| 菏泽市| 奉节县| 嘉兴市|