无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

【熟肉】線性代數(shù)的本質(zhì) - 04 - 矩陣乘法與線性變換復(fù)合

2022-10-07 12:49 作者:超愛看番的足球仔  | 我要投稿

0:05-2:00是recap,見過的最精簡,最邏輯,最漂亮的回顧概述!變化的效果可以用新的基向量坐標(biāo)表示(因?yàn)樗麄兡芙M成所有的向量),把變化后新的基向量坐標(biāo)寫成列,排在一起。構(gòu)成的就是表示這種變化的矩陣

3:30矩陣乘法定義

5:10用前面一集和recap中講到的矩陣的空間(坐標(biāo)系)意義來解釋矩陣乘法:第一次變化后的基向量(單列),作為輸入再重新乘第二次變化的矩陣(相當(dāng)于又做了一次普通向量乘法,最后得到最終的基向量)——也是矩陣乘法公式的計(jì)算方法


7:13總結(jié),記住乘法公式同時(shí),也要理解矩陣乘法表示兩個(gè)線性變換相繼作用。因?yàn)檫@能幫你理解甚至省去一些抽象的證明9:01

【熟肉】線性代數(shù)的本質(zhì) - 04 - 矩陣乘法與線性變換復(fù)合的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
绍兴县| 镇江市| 增城市| 淮北市| 芒康县| 苏尼特左旗| 南阳市| 渭南市| 东明县| 平凉市| 台江县| 同江市| 翁牛特旗| 郸城县| 墨脱县| 三门县| 铁岭市| 台北市| 蓬莱市| 宁德市| 临沭县| 台北市| 凯里市| 大丰市| 昌都县| 民丰县| 于都县| 修文县| 兴隆县| 玉山县| 吉安市| 石棉县| 玉龙| 修水县| 沙坪坝区| 清河县| 保靖县| 明星| 丰县| 曲阳县| 廉江市|