无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Series] Sum of Squares

2021-07-10 18:34 作者:AoiSTZ23  | 我要投稿

?By: Tao Steven Zheng (鄭濤)

【Problem】

In his work "On Spirals", Archimedes (287 – 212 BC) derived the formula for calculating the sum of consecutive perfect squares. Figure 1 shows the geometric representation of the sum

1%5E2%2B2%5E2%2B3%5E2%2B4%5E2%2B5%5E2

used by Archimedes. He was able to derive the formula

%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%20k%5E2%20%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D

Explain Archimedes’ proof of the sum of consecutive perfect squares using modern algebraic notation.

Figure 1

【Solution】

?Figure 1 represents the equation

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn%5E2%20(n%2B1)%2B(1%2B2%2B3%2B%E2%8B%AF%2Bn)

Since

1%2B2%2B3%2B%E2%8B%AF%2Bn%3D%5Cfrac%7Bn(n%2B1)%7D%7B2%7D

it follows that

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn%5E2%20(n%2B1)%2B%5Cfrac%7Bn(n%2B1)%7D%7B2%7D

3(1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%20)%3Dn(n%2B1)(n%2B%5Cfrac%7B1%7D%7B2%7D)

1%5E2%2B2%5E2%2B3%5E2%2B%E2%8B%AF%2Bn%5E2%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D

Consequently,

%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%20k%5E2%20%3D%5Cfrac%7Bn(n%2B1)(2n%2B1)%7D%7B6%7D


[Series] Sum of Squares的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
同仁县| 常州市| 彩票| 怀安县| 类乌齐县| 澎湖县| 万州区| 栖霞市| 阳原县| 九龙县| 德阳市| 柞水县| 大同县| 闽清县| 东源县| 应用必备| 维西| 新绛县| 自贡市| 新巴尔虎右旗| 监利县| 繁峙县| 白朗县| 乌什县| 郓城县| 曲水县| 固原市| 普安县| 乌恰县| 巨野县| 墨脱县| 嘉禾县| 呼图壁县| 牡丹江市| 庆元县| 遂昌县| 深圳市| 武山县| 广东省| 井陉县| 辽源市|