无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網 會員登陸 & 注冊

通過矩陣變換點得到其在另一個坐標系的位置

2023-05-05 11:12 作者:莫末陌寞  | 我要投稿

這里只是提供簡單的實現,不解釋任何數學原理。

對于一個點(x, y, z),可以用 [x , y ,z ,1 ] 這個矩陣表示。

通過點構造的矩陣,發(fā)生了什么樣的變換按順序(下文)進行運算即可,下面提供了我對引用的“數學篇”的變換的代碼實現,自由測試喵。

本文大片引用“Unity Shader入門精要”數學篇,作者放出了數學篇的PDF。

對Shader有興趣可以購買圖書。

對于一個點(x, y, z),可以用 [x , y ,z ,1 ] 這個矩陣表示。

Unity的Transform是一個記錄變換的組件,我們可以用矩陣操作復現他。

首先要說明,矩陣是不兼容交換律的,即A*B ≠ B*A,不清楚的應該先去學習一下矩陣的基礎。

A*B的運算中,A提供新矩陣的行,B提供新矩陣的列,交換之后可能都無法運算。

Transform的運算順序如下,他是從右向左運算的。

旋轉矩陣是由xyz三個軸上的旋轉構成的:

這里的5個M矩陣(M旋轉包含了xyz),如果其一沒有發(fā)生,可以不運算。

即坐標系相對于原坐標系只發(fā)生了xy旋轉,Mx * My * 原點矩陣,即可。


通過矩陣變換點得到其在另一個坐標系的位置的評論 (共 條)

分享到微博請遵守國家法律
图们市| 崇信县| 揭西县| 休宁县| 西平县| 灵宝市| 突泉县| 大洼县| 兴和县| 遵义县| 大英县| 布尔津县| 溧水县| 长岭县| 章丘市| 阜南县| 土默特右旗| 青铜峡市| 建德市| 榕江县| 弋阳县| 金沙县| 邵阳市| 江门市| 江北区| 上蔡县| 翁牛特旗| 古浪县| 永济市| 江永县| 麻阳| 古浪县| 临朐县| 洮南市| 本溪| 丰台区| 呼伦贝尔市| 成武县| 罗甸县| 上栗县| 镇康县|