无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

關于極點極線的一對基礎命題

2022-10-19 16:46 作者:數(shù)學老頑童  | 我要投稿
  • 已知橢圓%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1a%3Eb%3E0)及其所在平面內(nèi)一點P%5Cleft(%20x_0%2Cy_0%20%5Cright)%20(不在橢圓上,也不在橢圓中心),過P的直線l_1與橢圓交于A、B兩點,與直線l_2%5Cfrac%7Bx_0x%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0y%7D%7Bb%5E2%7D%3D1交于點Q,證明:%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D.

l_1的參數(shù)方程為%5Cbegin%7Bcases%7D%09x%3Dx_0%2Bt%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y%3Dy_0%2Bt%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

t為參數(shù)),

與橢圓聯(lián)立得

%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%2B%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%3D0

各項同除以t%5E2,得

%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright)%20%5Cleft(%20%5Cfrac%7B1%7D%7Bt%7D%20%5Cright)%20%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20%5Cfrac%7B1%7D%7Bt%7D%2B%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%3D0

依韋達定理可得

%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7B2%5Cleft(%20%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%5Cright)%7D.

聯(lián)立l_1l_2,解得

%5Cfrac%7B1%7D%7Bt_0%7D%3D%5Cfrac%7B%5Cfrac%7Bx_0%5Ccos%20%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%20%5Calpha%7D%7Bb%5E2%7D%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D.

所以

%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7B2%7D%7Bt_0%7D%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D

  • 已知橢圓%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D%2B%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D1a%3Eb%3E0)及其所在平面內(nèi)一點P%5Cleft(%20x_0%2Cy_0%20%5Cright)%20(不在橢圓上,也不在橢圓中心),過P的直線l與橢圓交于A、B兩點,點Q滿足:%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D,求Q的軌跡方程.

l的參數(shù)方程為%5Cbegin%7Bcases%7D%09x%3Dx_0%2Bt%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y%3Dy_0%2Bt%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

t為參數(shù)),

與橢圓聯(lián)立得

%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20t%2B%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%3D0

各項同除以t%5E2,得

%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D-1%20%5Cright)%20%5Cleft(%20%5Cfrac%7B1%7D%7Bt%7D%20%5Cright)%20%5E2%2B%5Cleft(%20%5Cfrac%7B2x_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B2y_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%5Ccdot%20%5Cfrac%7B1%7D%7Bt%7D%2B%5Cleft(%20%5Cfrac%7B%5Ccos%20%5E2%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7B%5Csin%20%5E2%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%20%3D0

依韋達定理可得

%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%3D%5Cfrac%7B2%5Cleft(%20%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D.

所以

%5Cbegin%7Baligned%7D%0A%09%5Cfrac%7B2%7D%7Bt_Q%7D%26%3D%5Cfrac%7B2%7D%7B%5Cleft%7C%20PQ%20%5Cright%7C%7D%3D%5Cfrac%7B1%7D%7B%5Cleft%7C%20PA%20%5Cright%7C%7D%2B%5Cfrac%7B1%7D%7B%5Cleft%7C%20PB%20%5Cright%7C%7D%3D%5Cfrac%7B1%7D%7Bt_1%7D%2B%5Cfrac%7B1%7D%7Bt_2%7D%5C%5C%0A%09%26%3D%5Cfrac%7B2%5Cleft(%20%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%20%5Cright)%7D%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%5C%5C%0A%5Cend%7Baligned%7D

所以

t_Q%3D%5Cfrac%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%7B%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%7D.

所以

%5Cbegin%7Bcases%7D%09x_Q%3Dx_0%2B%5Cfrac%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%7B%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%7D%5Ccdot%20%5Ccos%20%20%5Calpha%20%2C%5C%5C%09y_Q%3Dy_0%2B%5Cfrac%7B1-%5Cleft(%20%5Cfrac%7Bx_%7B0%7D%5E%7B2%7D%7D%7Ba%5E2%7D%2B%5Cfrac%7By_%7B0%7D%5E%7B2%7D%7D%7Bb%5E2%7D%20%5Cright)%7D%7B%5Cfrac%7Bx_0%5Ccos%20%5Calpha%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0%5Csin%20%5Calpha%7D%7Bb%5E2%7D%7D%5Ccdot%20%5Csin%20%20%5Calpha%20%2C%5C%5C%5Cend%7Bcases%7D

消去%5Calpha可得:%5Cfrac%7Bx_0x_Q%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0y_Q%7D%7Bb%5E2%7D%3D1.

所以點Q的軌跡方程為直線:

%5Cfrac%7Bx_0x%7D%7Ba%5E2%7D%2B%5Cfrac%7By_0y%7D%7Bb%5E2%7D%3D1.

關于極點極線的一對基礎命題的評論 (共 條)

分享到微博請遵守國家法律
岑溪市| 土默特右旗| 辉县市| 江山市| 肇东市| 六枝特区| 丹寨县| 吉安市| 西昌市| 天长市| 怀仁县| 册亨县| 沛县| 苏尼特右旗| 唐山市| 泾川县| 江达县| 什邡市| 获嘉县| 井冈山市| 德州市| 开江县| 于都县| 大英县| 红河县| 百色市| 辰溪县| 泉州市| 丰宁| 韶关市| 富蕴县| 德州市| 太保市| 株洲县| 金堂县| 雷州市| 沅陵县| 龙海市| 四川省| 桑植县| 雅安市|