无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

不繞軸的旋轉(zhuǎn)體體積你會求嗎?二重積分是個好方法!速懂!

2023-08-17 21:39 作者:崽崽lovening  | 我要投稿

一、經(jīng)典題目 已知區(qū)域D: (x-a)2+(y-b)2≤r2,0

特注: ①如果區(qū)域是很規(guī)則的區(qū)域,那么形心就是幾何中心。如矩形的形心是對角線的交點(diǎn),圓的形心就是圓心,橢圓的形心就是兩條對稱軸的交點(diǎn),這是很容易理解的,不再贅述。 ②由于∫∫dσ就是D的面積S,所以上述公式常變形為∫∫xdxdy=S乘x形心坐標(biāo),∫∫ydxdy=S乘y形心坐標(biāo)。 三、題目分析 圓域D的形心顯然是(a,b),面積為πr2,所以∫∫xdxdy=aπr2。 根據(jù)體積公式可知區(qū)域內(nèi)的任意一點(diǎn)(x,y)到x=2r的距離r(x,y)=(2r-x)。 所以V=2π∫∫(2r-x)dxdy,即V=4πr*πr2-2π∫∫xdxdy=4π2r3-2π*aπr2=4π2r3-2aπ2r2。 四、歡迎討論 如果對題目和理論有疑問,可以在評論區(qū)發(fā)表觀點(diǎn)和見解。

不繞軸的旋轉(zhuǎn)體體積你會求嗎?二重積分是個好方法!速懂!的評論 (共 條)

分享到微博請遵守國家法律
晋城| 石阡县| 航空| 普兰店市| 疏附县| 尼木县| 台湾省| 罗定市| 招远市| 罗甸县| 永仁县| 萍乡市| 太白县| 丰原市| 金塔县| 庐江县| 孙吴县| 中卫市| 彭山县| 筠连县| 岢岚县| 永和县| 平原县| 兴山县| 甘谷县| 凤山县| 惠东县| 汝城县| 牡丹江市| 布拖县| 南宁市| 彝良县| 教育| 大丰市| 河池市| 富川| 新源县| 河南省| 海安县| 香河县| 安平县|