无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

Reinforcement Learning_Code_Value Function Approximation

2023-04-08 11:30 作者:別叫我小紅  | 我要投稿

Following results and code are the implementation of value function approximation, including Monte Carlo, Sarsa and deep Q-learning, in?Gymnasium's?Cart Pole environment.


RESULTS:

Visualizations of (i)?changes?in?scores, losses and epsilons, and (ii) animation results.

1. Monte Carlo

Fig. 1.1. Changes in scores, losses and epsilons.
Fig.?1.2. Animation results.

2. Sarsa

Original Sarsa, which is exactly what is used here, may has same need as Q-learning, which refers to a resample buffer.?

Because in original implementation of? Sarsa and Q-learning, q-value is updated once an action is taken, which will lead the algorithm to extreme instability.?

So, to get better results, we need to update q-value after a number of steps, which means introducing experience replay.


Fig. 2.1. Changes in scores, losses and epsilons.
Fig. 2.2. Animation results.

3. Deep Q-learning

Here we use experience replay and fixed Q-targets.

Fig. 3.1. Changes in scores, losses and epsilons.
Fig. 3.2. Animation results.


CODE:

NetWork.py


MCAgent.py


SarsaAgent.py


ReplayBuffer.py


DQNAgent.py


train_and_test.py


The above code?are mainly based on rainbow-is-all-you-need[1] and extend?solutions to Monte Carlo and?Sarsa.


Reference

[1] https://github.com/Curt-Park/rainbow-is-all-you-need


Reinforcement Learning_Code_Value Function Approximation的評論 (共 條)

分享到微博請遵守國家法律
无极县| 双峰县| 甘南县| 张家港市| 黄冈市| 策勒县| 滨州市| 普格县| 徐汇区| 宁安市| 东台市| 淳安县| 萨嘎县| 宁明县| 黔南| 堆龙德庆县| 小金县| 肃宁县| 汽车| 延川县| 福贡县| 黄冈市| 青海省| 青川县| 乌兰浩特市| 汤阴县| 宜兴市| 孟村| 江油市| 舟山市| 翁源县| 台州市| 柳州市| 仙居县| 巩义市| 广宗县| 雷州市| 平乡县| 曲松县| 依兰县| 双桥区|