无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Calculus] Integral of Inverse Tangent

2021-10-07 09:49 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

This problem is a good exercise on integration by parts and integration by substitution.
Compute the integral

%20%5Cint%20%5Carctan(x)%20dx

【Solution】

Step 1:Integration by Parts

Let u%20%3D%20%5Carctan(x) and %20dv%20%3D%20(1)dx.

Then du%20%3D%20%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D%20dx%20 and v%20%3D%20x%20.

By the integration by parts

%5Cint%20udv%20%3D%20uv%20-%20%5Cint%20vdu

we get

%5Cint%20%5Carctan(x)%20dx%20%20%3D%20%5Carctan(x)%5Ccdot%20x%20-%20%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx


Step 2:Integration by Substitution

Now focus on the integral %5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20. Use the substitution method for this integral.

Let u%20%3D%201%20%2Bx%5E2, then du%20%3D%202x%20dx.

Therefore,

%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cint%20%5Cfrac%7B1%7D%7Bu%7D%20du%20

%5Cint%20%5Cfrac%7Bx%7D%7B1%2Bx%5E2%7D%20dx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%7C1%2Bx%5E2%7C


Consequently, the complete integral is

%20%5Cint%20%5Carctan(x)%20dx%20%3D%20x%5Carctan(x)%20-%20%5Cfrac%7B1%7D%7B2%7D%20%5Cln%7C1%2Bx%5E2%7C%20%2B%20C

[Calculus] Integral of Inverse Tangent的評論 (共 條)

分享到微博請遵守國家法律
淳化县| 铜山县| 临颍县| 鸡泽县| 京山县| 河北区| 互助| 唐海县| 年辖:市辖区| 兴隆县| 泉州市| 景德镇市| 侯马市| 万载县| 嘉兴市| 荃湾区| 城口县| 兴安盟| 沛县| 崇明县| 乡宁县| 双鸭山市| 无为县| 左权县| 迭部县| 凤山市| 富宁县| 上犹县| 淮南市| 叶城县| 定边县| 永州市| 南郑县| 平南县| 白山市| 海宁市| 旬邑县| 玛沁县| 衡阳市| 永和县| 盘山县|