无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Algebra] Brahmagupta–Fibonacci Identity

2021-07-29 08:30 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

The Brahmagupta–Fibonacci identity states that if two positive integers are each the sum of two Squares, then their product is the sum of two Squares. More specifically, consider four positive integers[1] a%2C%20b%2C%20c%2C%20d:

?(a%5E2%2Bb%5E2%20)(c%5E2%2Bd%5E2%20)%3D(ac%E2%88%93bd)%5E2%2B(ad%C2%B1bc)%5E2

The identity first appeared in Diophantus’ "Arithmetica" in the 3rd century AD and later reappeared in Fibonacci’s "Liber Quadratorum" (Book of Squares) in 1225 AD. In the "Brahma-sphuta-siddhanta" (Correctly Established Doctrine of Brahma), Brahmagupta generalized it to

(a%5E2%2Bnb%5E2%20)(c%5E2%2Bnd%5E2%20)%3D(ac%E2%88%93nbd)%5E2%2Bn(ad%C2%B1bc)%5E2?

where?n is also a positive integer. Prove the general formula of Brahmagupta.

[1] The identity is true for real numbers a, b, c, d.

【Solution】

(a%5E2%2Bnb%5E2%20)(c%5E2%2Bnd%5E2%20)%3Da%5E2%20c%5E2%2Bna%5E2%20d%5E2%2Bnb%5E2%20c%5E2%2Bn%5E2%20b%5E2%20d%5E2%20

(a%5E2%2Bnb%5E2%20)(c%5E2%2Bnd%5E2%20)%3Da%5E2%20c%5E2%2Bna%5E2%20d%5E2%2Bnb%5E2%20c%5E2%2Bn%5E2%20b%5E2%20d%5E2-2nabcd%2B2nabcd

(a%5E2%2Bnb%5E2%20)(c%5E2%2Bnd%5E2%20)%3D(a%5E2%20c%5E2%E2%88%932nabcd%2Bn%5E2%20b%5E2%20d%5E2%20)%2B(na%5E2%20d%5E2%C2%B12abcd%2Bnb%5E2%20c%5E2%20)

(a%5E2%2Bnb%5E2%20)(c%5E2%2Bnd%5E2%20)%3D(ac%E2%88%93nbd)%5E2%2Bn(ad%C2%B1bc)%5E2


Brahmagupta
Fibonacci




[Algebra] Brahmagupta–Fibonacci Identity的評論 (共 條)

分享到微博請遵守國家法律
乌拉特后旗| 新昌县| 饶河县| 吉隆县| 石景山区| 新野县| 江安县| 郁南县| 龙门县| 淮北市| 邯郸县| 绥江县| 宜章县| 临安市| SHOW| 饶平县| 东阳市| 大新县| 洛宁县| 彩票| 浦北县| 奉贤区| 牟定县| 淮北市| 上蔡县| 黔西县| 衢州市| 巧家县| 临夏市| 奉贤区| 巴林左旗| 普宁市| 兴业县| 旺苍县| 祁阳县| 乌兰察布市| 呼图壁县| 水城县| 怀远县| 秦安县| 榕江县|