无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

An Introduction to Modular Arithmetic

2023-09-27 11:59 作者:第一性原理  | 我要投稿

The best way to introduce modular arithmetic is to think of the face of a clock.


The numbers go from 1 to 12, but when you get to "13 o'clock",?it actually becomes 1 o'clock again

So?

13?becomes?1,?

14?becomes?2,?

and so on.

This can keep going, so when you get to "25?o'clock'', you are actually back round to where?1?o'clock is on the clock face (and also where?13?o'clock was too).

What we are saying is?

"13=1+?some multiple of?12", and?

"38=2+?some multiple of?12",?

or, alternatively, "the remainder when you divide?13?by?12?is?1" and "the remainder when you divide?38?by 12 is 2''. The way we write this mathematically is?

13≡1?mod?12,?

38≡2?mod?12

and so on. This is read as?

"13?is congruent to?1?mod (or modulo)?12" and?

"38?is congruent to?2?mod?12".

Congruence

key words:

mod?u?lar?/?m?dj?l??$??mɑ?d??l?r/?adjective?

con?gru?ent?/?k??ɡru?nt?$??kɑ??-/?adjective

congruence

re?main?der?/r??me?nd??$?-?r/?●○○?noun


An Introduction to Modular Arithmetic的評論 (共 條)

分享到微博請遵守國家法律
泽普县| 湘乡市| 定南县| 大庆市| 察雅县| 嘉善县| 眉山市| 日土县| 东源县| 宝兴县| 堆龙德庆县| 阿城市| 黑河市| 东台市| 榆社县| 界首市| 迁安市| 高尔夫| 遂宁市| 临朐县| 昌邑市| 沙湾县| 额敏县| 巴林右旗| 宁阳县| 临漳县| 新和县| 南木林县| 聂拉木县| 永和县| 盘锦市| 大邑县| 历史| 莱西市| 乌拉特中旗| 安新县| 恩平市| 漳浦县| 新昌县| 都江堰市| 沁阳市|