无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Geometry] Prismoidal Formula

2021-11-21 10:53 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

A ''prismatoid'' is a polyhedron whose vertices all lie in one or the other of two parallel planes. The perpendicular distance between the two planes is called the ''height'' or ''altitude''. The faces that lie in the parallel planes are called the ''bases'' of the prismatoid. The ''midsection'' is the polygon formed by cutting the prismatoid by a plane parallel to the bases halfway between them.

The volume of a prismatoid is given by the “prismoidal formula”:

V%20%3D%20%5Cfrac%7Bh%7D%7B6%7D%5Cleft(A_T%20%2B%204A_M%20%2B%20A_B%20%5Cright)

where h is the height, A_T%20 is the area of the top base, A_M is the area of the midsection, and A_B is the area of the bottom base.

Use the prismoidal formula to determine the volume of the following solids:

(1) Cube
(2) Paraboloid
(3) Sphere
(4) Bicylinder

【Solution】

(1) Cube

The cube is a square prism. Let the length of each edge be d. The area of the top base, midsection and bottom base must all be the same; hence, %20A_T%20%3D%20A_M%20%3D%20A_B%20%3D%20d%5E2.


%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%5Cleft(d%5E2%20%2B%204%20%5Ctimes%20d%5E2%2B%20d%5E2%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%20%5Ctimes%206d%5E2%20%5C%5C%0AV%20%26%3D%20d%5E3%0A%5Cend%7Balign%7D


(2) Paraboloid

Let h be the height of the paraboloid. The base of a paraboloid is a circle with radius r. The top of the paraboloid is a point with no area. The midsection is harder to determine. From

Volume of a Paraboloid it is found that the radius of a paraboloid as a function of height is

%20r(x)%20%3D%20%5Cfrac%7Br%7D%7B%5Csqrt%7Bh%7D%7D%20%5Csqrt%7Bx%7D

Thus at x%20%3D%20%5Cfrac%7Bh%7D%7B2%7D, the radius of the circle at the midsection is r_M%20%3D%20%5Cfrac%7Br%7D%7B%5Csqrt%7B2%7D%7D and the area of the midsection is %20A_M%20%3D%20%5Cpi%7B(r_M)%7D%5E2%20%3D%20%5Cfrac%7B%5Cpi%20r%5E2%7D%7B2%7D.

%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7Bh%7D%7B6%7D%5Cleft(0%20%2B%204%20%5Ctimes%20%5Cleft(%5Cfrac%7B%5Cpi%20r%5E2%7D%7B2%7D%5Cright)%2B%20%5Cpi%20r%5E2%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7Bh%7D%7B6%7D%20%5Ctimes%203%5Cpi%20r%5E2%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B%5Cpi%20r%5E2%20h%7D%7B2%7D%20%5C%5C%0A%5Cend%7Balign%7D


(3) Sphere

Let r be the radius of the sphere. The the top base and bottom base of a sphere are points with no area; hence, A_T%20%3D%20A_B%20%3D%200. The midsection is a circle with area %5Cpi%20r%5E2.


%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7B2r%7D%7B6%7D%5Cleft(0%20%2B%204%20%5Ctimes%20%5Cpi%20r%5E2%2B%200%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B2r%7D%7B6%7D%5Ctimes%204%5Cpi%20r%5E2%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D%0A%5Cend%7Balign%7D



(4) Bicylinder

The the top and base of the bicylinder are points with no area; hence, %20A_T%20%3D%20A_B%20%3D%200. The midsection is a square with area d%5E2.

%5Cbegin%7Balign%7D%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%5Cleft(0%20%2B%204%20%5Ctimes%20d%5E2%2B%200%20%5Cright)%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7Bd%7D%7B6%7D%20%5Ctimes%204d%5E2%20%20%5C%5C%0AV%20%26%3D%20%5Cfrac%7B2d%5E3%7D%7B3%7D%0A%5Cend%7Balign%7D


[Geometry] Prismoidal Formula的評論 (共 條)

分享到微博請遵守國家法律
和田市| 临泽县| 大名县| 九龙坡区| 溆浦县| 藁城市| 唐海县| 长宁区| 韩城市| 永济市| 南昌市| 阳信县| 沈丘县| 常宁市| 涪陵区| 甘南县| 台中县| 定边县| 渭南市| 佳木斯市| 新沂市| 延吉市| 广州市| 黔江区| 甘南县| 钦州市| 武宣县| 兰考县| 乐山市| 获嘉县| 吕梁市| 东丰县| 南充市| 喀喇沁旗| 吉木萨尔县| 疏附县| 高雄市| 天门市| 吉木萨尔县| 万年县| 纳雍县|