无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

A multiplicative inverse for a (mod n)

2023-09-29 15:57 作者:第一性原理  | 我要投稿

Modular Arithmetic


Definition 5

?Let n ∈ N and let a,b ∈ Z. We say that a is congruent to b modulo n?

if n|(a?b).?

We write this as a ≡ b (mod n).


Theorem 2

Let n∈N and let a,b∈Z. TFAE:("The Following Are Equivalent")

1. a≡b(modn).
2. a and b leave the same remainder when divided by n.?

3. a=b+kn?for some?k∈Z.


Theorem 3

Let a1,a2,b1,b2 ∈ Z, and let n ∈ N.?

Suppose, further, that a1 ≡ a2 (mod?n) and b1 ≡b2 (mod?n). Then

1. a1 + b1 ≡ a2 + b2 (mod n).

2. a1b1 ≡ a2b2 (mod n).

3. a1 ? b1 ≡ a2 ? b2 (mod n).

Ok, this is pretty great, but it’s missing one operation! How do we perform division modulo n? Or even, can we?

As a reminder of how we defined division way back when, we had the following definition for the number 1/n?:

Definition 8

Let n ∈ N and let a ∈ Z. We say that u is?

if?au ≡ 1 (mod n).

So, in Example 8, we showed that 5 is a multiplicative inverse for 3 modulo 7.?

5%5Ccdot%203%5Cequiv%2015%5Cequiv%201(%5Cmod%207)

Let’s take a look at another example:

So sometimes inverses exist, and sometimes they don’t.?

1%5Ccdot%201%5Cequiv%201%5Cequiv%201(%5Cmod%206)

5%5Ccdot%205%5Cequiv%2025%5Cequiv%201(%5Cmod%206)

There are common?factors between??6? and (2, 3, 4,6).

1%5Ccdot%201%5Cequiv%201%5Cequiv%201(%5Cmod%207)

2%5Ccdot%204%5Cequiv%208%5Cequiv%201(%5Cmod%207)

3%5Ccdot%205%5Cequiv%2015%5Cequiv%201(%5Cmod%207)

4%5Ccdot%202%5Cequiv%208%5Cequiv%201(%5Cmod%207)

5%5Ccdot%203%5Cequiv%2015%5Cequiv%201(%5Cmod%207)

6%5Ccdot%206%5Cequiv%2036%5Cequiv%201(%5Cmod%207)

There are common?factors between? 7?and 7.

1%5Ccdot%201%5Cequiv%201%5Cequiv%201(%5Cmod%208)

3%5Ccdot%203%5Cequiv%209%5Cequiv%201(%5Cmod%208)

5%5Ccdot%205%5Cequiv%2025%5Cequiv%201(%5Cmod%208)

7%5Ccdot%207%5Cequiv%2049%5Cequiv%201(%5Cmod%208)

There are common?factors between? 8?and (2,4,6,8).

Examining the above 3 examples, you might notice a pattern: multiplicative inverses do not exist anytime the number we are interested in shares a factor with the modulus. This, in general, is the feature we are looking for.


Theorem 4.?

Let n ∈ N and a ∈ Z. Then a has a multiplicative inverse modulo n?

if and only if a ⊥ n.


example:

1?⊥ 6

5?⊥ 6


1?⊥ 7

2?⊥ 7

3?⊥ 7

4?⊥ 7

5?⊥ 7

6?⊥ 7


1?⊥ 8

3?⊥ 8

5?⊥ 8

7 ⊥ 8

A multiplicative inverse for a (mod n)的評論 (共 條)

分享到微博請遵守國家法律
石门县| 孝昌县| 衡阳市| 乃东县| 开平市| 改则县| 靖远县| 咸阳市| 泾源县| 乐都县| 五家渠市| 新疆| 丹巴县| 马尔康县| 泽库县| 阿瓦提县| 蓝田县| 雷山县| 崇州市| 廉江市| 山西省| 嘉兴市| 兴文县| 沾化县| 海城市| 富川| 会理县| 漯河市| 无为县| 阜平县| 石屏县| 富顺县| 新昌县| 疏附县| 万州区| 景德镇市| 鲜城| 泸溪县| 惠州市| 北辰区| 新泰市|