无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Calculus] Heat Kernel

2021-11-03 19:13 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Verify that the normal distribution

%20u(x%2Ct)%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%20%5Cpi%20kt%7D%7D%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D

satisfies the heat equation [1] %20u_t%20%3D%20k%20u_%7Bxx%7D%20 (where k is a constant) for t%3E0, subject to the initial condition u(x%2C0)%3D%5Cdelta(x)%20, where %5Cdelta(x) is the Dirac delta function [2].

[1] The heat equation %20u_t%20%3D%20k%20u_%7Bxx%7D%20 is equivalent to %5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20t%7D%20%3D%20k%20%5Cfrac%7B%5Cpartial%5E2u%7D%7B%5Cpartial%20x%5E2%7D.

[2] The Dirac delta function is defined as %5Cdelta(x)%3D%5Cbegin%7Bcases%7D%20%0A%5Cinfty%2C%20%5Cquad%20x%3D0%20%5C%5C%0A0%2C%20%5Cquad%20x%20%5Cne%200%0A%5Cend%7Bcases%7D


Normal distributions


【Solution】

Take the first partial derivatives of %20u(x%2Ct) with respect to t.

%20u_t%20%3D%20%5Cfrac%7B-1%7D%7B2t%5Csqrt%7B4%20%5Cpi%20kt%7D%7D%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D%20%2B%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%5Cpi%20kt%7D%7D%5Cleft(%5Cfrac%7Bx%5E2%7D%7B4kt%5E2%7D%5Cright)%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D

u_t%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%5Cpi%20kt%7D%7D%20%5Cleft(%5Cfrac%7B-1%7D%7B2t%7D%20%2B%20%5Cfrac%7Bx%5E2%7D%7B4kt%5E2%7D%5Cright)%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D

Take the first partial derivatives of u(x%2Ct)%20 with respect to x%20.

u_x%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%5Cpi%20kt%7D%7D%20%5Cleft(%5Cfrac%7B-2x%7D%7B4kt%7D%5Cright)%20%5Cexp%7B%5Cleft(%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D

Take the second partial derivatives of u(x%2Ct)%20 with respect to x%20.

u_%7Bxx%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%5Cpi%20kt%7D%7D%20%5Cleft(%5Cfrac%7B-1%7D%7B2kt%7D%20%2B%20%5Cfrac%7Bx%5E2%7D%7B4k%5E2t%5E2%7D%5Cright)%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D%20

Thus,

ku_%7Bxx%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B4%5Cpi%20kt%7D%7D%20%5Cleft(%5Cfrac%7B-1%7D%7B2t%7D%20%2B%20%5Cfrac%7Bx%5E2%7D%7B4kt%5E2%7D%5Cright)%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D

Both sides of the equation match; therefore, the partial differential equation
%20u_t%20%3D%20ku_%7Bxx%7D is satisfied.

Now for the initial condition. The Dirac delta function is actually a distribution, not a function. In fact the limit

?%5Clim_%7Bt%20%5Cto%200%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B4%20%5Cpi%20kt%7D%7D%20%5Cexp%7B%5Cleft(-%5Cfrac%7Bx%5E2%7D%7B4kt%7D%5Cright)%7D%3D%20%5Cdelta%20(x)%20

automatically verifies the validity of this initial condition.

Dirac delta function


[Calculus] Heat Kernel的評論 (共 條)

分享到微博請遵守國家法律
延边| 高淳县| 深泽县| 秦安县| 资中县| 固安县| 东宁县| 重庆市| 柳林县| 湾仔区| 横山县| 通榆县| 合水县| 宁南县| 平遥县| 通化市| 永丰县| 商都县| 兰溪市| 隆德县| 鹿邑县| 白城市| 临洮县| 开阳县| 太原市| 竹溪县| 那曲县| 外汇| 无棣县| 重庆市| 化州市| 喜德县| 长宁县| 墨玉县| 湘潭市| 兴山县| 阿荣旗| 贵定县| 应用必备| 巴楚县| 辉南县|