无码av一区二区三区无码,在线观看老湿视频福利,日韩经典三级片,成 人色 网 站 欧美大片在线观看

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

LeetCode 1630. Arithmetic Subarrays

2023-03-11 15:39 作者:您是打尖兒還是住店呢  | 我要投稿

A sequence of numbers is called?arithmetic?if it consists of at least two elements, and the difference between every two consecutive elements is the same. More formally, a sequence?s?is arithmetic if and only if?s[i+1] - s[i] == s[1] - s[0]?for all valid?i.

For example, these are?arithmetic?sequences:

1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, -5, -9

The following sequence is not?arithmetic:

1, 1, 2, 5, 7

You are given an array of?n?integers,?nums, and two arrays of?m?integers each,?l?and?r, representing the?m?range queries, where the?ith?query is the range?[l[i], r[i]]. All the arrays are?0-indexed.

Return?a list of?boolean?elements?answer, where?answer[i]?is?true?if the subarray?nums[l[i]], nums[l[i]+1], ... , nums[r[i]]?can be?rearranged?to form an?arithmetic?sequence, and?false?otherwise.

?

Example 1:

Input: nums = [4,6,5,9,3,7], l = [0,0,2], r = [2,3,5]Output: [true,false,true]Explanation:In the 0th query, the subarray is [4,6,5]. This can be rearranged as [6,5,4], which is an arithmetic sequence. In the 1st query, the subarray is [4,6,5,9]. This cannot be rearranged as an arithmetic sequence. In the 2nd query, the subarray is [5,9,3,7]. This can be rearranged as [3,5,7,9], which is an arithmetic sequence.

Example 2:

Input: nums = [-12,-9,-3,-12,-6,15,20,-25,-20,-15,-10], l = [0,1,6,4,8,7], r = [4,4,9,7,9,10]Output: [false,true,false,false,true,true]

?

Constraints:

  • n == nums.length

  • m == l.length

  • m == r.length

  • 2 <= n <= 500

  • 1 <= m <= 500

  • 0 <= l[i] < r[i] < n

  • -105?<= nums[i] <= 105

其實(shí)就是上個(gè)問(wèn)題的升級(jí)版,我是用數(shù)組臨時(shí)存儲(chǔ)的,因?yàn)楸仨氁判蛞幌?,所以沒(méi)辦法,但是運(yùn)行的時(shí)候老是出錯(cuò),結(jié)果是nums跟arr寫(xiě)反了。。。哎。


Runtime:?19 ms, faster than?82.36%?of?Java?online submissions for?Arithmetic Subarrays.

Memory Usage:?43.2 MB, less than?38.10%?of?Java?online submissions for?Arithmetic Subarrays.


LeetCode 1630. Arithmetic Subarrays的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
桑日县| 永城市| 石台县| 苍山县| 台北县| 上虞市| 盘山县| 沾化县| 万载县| 将乐县| 抚松县| 清苑县| 敦煌市| 蒲江县| 峡江县| 柏乡县| 长春市| 特克斯县| 彝良县| 天门市| 阳谷县| 大连市| 龙胜| 汝城县| 桐庐县| 澜沧| 宜都市| 翁牛特旗| 永登县| 宜阳县| 平定县| 贵港市| 建昌县| 丹棱县| 瑞金市| 龙口市| 平乐县| 江孜县| 太仓市| 藁城市| 京山县|